Где располагаются зрительные рецепторы и как они называются?

Двухкомпонентная гипотеза цветовосприятия

Данная гипотеза утверждает, что в состав колбочек входит только эритолаб и хлоролаб, воспринимающие длинную и среднюю часть цветового спектра, соответственно. За короткие волны «отвечает» родопсин, являющийся главным компонентом палочек.

В пользу данного утверждения говорит то, что пациенты, не различающие синий спектр (т.е. короткие волны), страдают от проблем с ночным зрением.

Колбочки

Фоторецептор по внешнему виду напоминает конус. В сетчатой оболочке сосредоточенно до семи миллионов колбочек. Однако, большое количество не означает гигантские параметры. Элемент имеет скромную длину (всего 50 мкм), ширина равняется четырем миллиметрам. Содержат пигмент йодопсин. Менее чувствительны, чем палочки, но быстрей реагируют на движения.

Особенности передачи световых импульсов

Палочки и колбочки воспринимают поток света и направляют его в центральную нервную систему. Обе клеточки способны плодотворно трудиться в дневное время суток. Главное отличие заключается в том, что колбочки обладают более высокой светочувствительностью, чем палочки.

За передачу сигнала ответственны интернейроны, к каждой клеточке прикреплено одновременно несколько рецепторов. При соединении ряда палочек, повышается степень чувствительности зрительного аппарата. В офтальмологии явление носит название «конвергенция». Благодаря ей человек может одновременно осматривать сразу несколько зрительных полей и улавливать малейшие колебания световых потоков.

Открытие родопсина

Пурпурная окраска клеток-палочек была открыта Генрихом Мюллером (Heinrich Müller) в 1851 году, который приписал её гемоглобину. В 1876 году Франц Болл (Franz Boll) заметил, что сетчатка лягушки чувствительна к свету и после освещения меняет свою окраску на жёлтую с последующим обесцвечиванием.

Болл также продемонстрировал, что сетчатка приобретает изначальную окраску после некоторого времени, проведенного животным в темноте. Вилли Кюхне (Willy Kühne), продолживший работы Болла, определил, что пигмент, отвечающий за окраску сетчатки — это белок наружных сегментов палочек (НСП), названный им «зрительным пурпуром» (родопсином).

Кюхне выделил родопсин из клеток пигментного эпителия сетчатки, сравнил спектроскопические свойства этого белка и препарата сетчатки, постулировал, что жёлтый и бесцветный продукты, образующиеся под действием света, химически различны и заключил, что генерация сетчаткой электрических импульсов является следствием реакции на свет. Работы Кюхне легли в основу современного понимания молекулярных механизмов зрения.

Патологии, связанные с фоторецепторным аппаратом

Нарушения в работе рецепторов и патологии самой сетчатой оболочки глаза могут приводить к различным нарушениям зрения и восприятия. Например:

  • С нарушением работы колбочек связано заболевание дальтонизмом, который бывает трех видов в зависимости от того, какого пигмента в колбочках нет. Чаще всего дальтонизм является наследственным недугом.
  • С патологиями палочек связана гемералопия (куриная слепота) – снижение зрения в сумерках.
  • Дегенерация пигментного слоя сетчатки связана с разрушением клеток пигментного слоя. Чаще это наследственная патология, но причины ее развития и сегодня не выяснены.
  • Хориоретинит. В воспалительный процесс вовлекается сетчатка и сосудистая оболочка. Этиология болезни связана с инфицированием различными микроорганизмами (бактериями туберкулеза, трепонемами сифилиса, токсоплазмой, паразитическими кокками, вирусами)
  • Отслоение сетчатки. На фоне микроразрывов под сетчатку проникает стекловидное тело и сама оболочка отходит от сосудистого слоя. Причин такой болезни много, от врожденных патологий (недоношенность) до онкологических заболеваний и механических повреждений.

Симптомы поражения палочек и колбочек

При развитии в организме недуга, затрагивающего главные рецепторы сетчатки, наблюдаются следующие признаки:

  • Падение остроты зрения;
  • Дальтонизм;
  • Появление ярких бликов перед глазами;
  • Проблемы с ночным видением;
  • Сужение зрительного обзора.

Часть патологий имеет специфическую симптоматику, поэтому не составит труда их диагностировать. К ним относится дальтонизм и «куриная слепота». Для выявления остальных заболеваний потребуется пройти дополнительное медицинское обследование.

Словарик

Хромопротеин
белок, поглощающий свет в видимом диапазоне (препарат этого белка имеет окраску).
Родопсин
светочувствительный рецептор клеток-палочек, представитель семейства А (или семейства родопсина) G-белоксопряженных рецепторов (GPCR-рецепторов).
G-белоксопряженные рецепторы
(G-protein coupled receptors, GPCR) — интегральные мембранные рецепторы со структурой, представленной семью трансмембранными α-спиралями, и передающие сигнал, как правило, с участием G-белков.
G-белки
внутриклеточные примембранные белки-гетеротримеры, названые так за способность связывать нуклеотиды ГТФ и ГДФ.
Клетки-«палочки»
клетки-фоторецепторы сетчатки глаза, чувствительные к свету низкой яркости
Наружный сегмент палочки (НСП)
цилиндрическая часть клетки-палочки, содержащая около 2000 мембранных органелл-«дисков»
Хромофор
органическая молекула, поглощающая свет с определенной длиной волны. В процессе зрения хромофором является 11-цис-ретиналь
Шиффово основание
химическая группа, содержащая двойную связь C=N
Фотоизомеризация
переход молекулы из одного изомерного состояния в другое под действием света

Строение колбочек

В состав рецептора входят:

  • Наружный элемент (мембранные диски);
  • Промежуточная часть (перетяжка);
  • Внутренний отдел (митохондрии);
  • Синаптическая область.
Часть дисков постоянно контактирует со световыми потоками и соответственно изнашивается, поэтому в колбочках непрерывно идет процесс их обновления. За сутки происходит смена около восьмидесяти дисков, полностью элемент восстанавливается за десять дней.

Трехкомпонентная гипотеза цветовосприятия

Существует три типа колбочек, каждая из которых содержит уникальную разновидность йодопсина и воспринимает определенную часть цветового спектра:

  • Хлоролаб (M-тип). Реагирует на желтый и зеленый оттенки;
  • Эритролаб (L-тип). Воспринимает желто-красную гамму;
  • Цианолаб (S-тип). Отвечает за реакцию на синюю и фиолетовую часть спектра.

Современные ученые, изучающие трехкомпонентную систему зрительного восприятия, отмечают ее несовершенство, поскольку научно не доказано существование трех типов колбочек. К тому же на сегодняшний день так и не обнаружен пигмент цианолаб.

Физиология рецепторов сетчатки

Восприятие цвета связано с функцией колбочковых клеток сетчатки глаза. Пигменты, содержащиеся в колбочках поглощают часть падающего на них света и отражающее остальную. Если какие-то спектральные компоненты видимого света поглощаются лучше других, то этот предмет мы воспринимаем как окрашенный.

Первичное различение цветов происходит в сетчатке- в палочках и колбочках свет вызывает первичное раздражение, которое превращается в электрические импульсы для окончательного формирования воспринимаемого оттенка в коре головного мозга.

В отличие от палочек, содержащих родопсин, колбочки содержат белок йодопсин. Йодопсин — общее название зрительных пигментов колбочек. Существует три типа йодопсина:

  • хлоролаб («зелёный», GCP),
  • эритролаб («красный», RCP) и
  • цианолаб («синий», BCP).

В настоящее время известно, что светочувствительный пигмент йодопсин находящийся во всех колбочках глаза, включает в себя такие пигменты, как хлоролаб и эритролаб. Оба эти пигмента чувствительны ко всей области видимого спектра, однако первый из них имеет максимум поглощения, соответствующий жёлто-зеленой (максимум поглощения около 540 нм.), а второй жёлто-красной (оранжевой) (максимум поглощения около 570 нм.) частям спектра.

Третий, гипотетический пигмент, чувствительный к фиолетово-синей области спектра, заранее получивший название цианолаб, на сегодняшний день так и не найден.

Кроме того, найти какую-либо разницу между колбочками в сетчатке глаза не удалось, не удалось и доказать наличие в каждой колбочке только одного типа пигмента. Более того, было признано, что в колбочке одновременно находятся пигменты хлоролаб и эритролаб.

Неаллельные гены хлоролаба (кодируется генами OPN1MW и OPN1MW2) и эритролаба (кодируется геном OPN1LW) находятся в Х-хромосомах. Эти гены давно хорошо выделены и изучены. Поэтому чаще всего встречаются такие формы дальтонизма, как дейтеронопия (нарушение образования хлоролаба) (6 % мужчин страдают этим заболеванием) и протанопия (нарушение образования эритолаба) (2 % мужчин).

Ген цианолаба OPN1SW расположен в седьмой хромосоме, поэтому тританопия (аутосомная форма дальтонизма, при которой нарушено образования цианолаба) — редкое заболевание. Человек, больной тританопией, всё видит в зеленых и красных цветах и не различает предметы в сумерках.

Нелинейная двухкомпонентная теория зрения

По другой модели (нелинейная двухкомпонентная теория зрения С. Ременко), третий «гипотетический» пигмент цианолаб не нужен, приёмником синей части спектра служит палочка. Это объясняется тем, что при яркости освещения достаточной для различения цветов, максимум спектральной чувствительности палочки (благодаря выцветанию содержащегося в ней родопсина) смещается от зелёной области спектра к синей.

По этой теории колбочка должна содержать в себе всего два пигмента с рядом расположенными максимами чувствительности: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра). Эти два пигмента давно найдены и тщательно изучены. При этом колбочка является нелинейным датчиком отношений, выдающем не только информацию о соотношении красного и зелёного цвета, но и выделяющем уровень жёлтого цвета в этой смеси.

Доказательством того, что приёмником синей части спектра в глазу является палочка, может служить и тот факт, что при цветоаномалии третьего типа (тританопия), глаз человека не только не воспринимает синей части спектра, но и не различает предметы в сумерках (куриная слепота), а это указывает именно на отсутствие нормальной работы палочек.

Кроме того, подтверждением этого механизма является и давно известный Эффект Пуркинье, суть которого заключается в том, что при наступлении сумерек, когда освещённость падает, красные цвета чернеют, а белые кажутся голубоватыми. Ричард Филлипс Фейнман отмечает, что: «это объясняется тем, что палочки видят синий край спектра лучше, чем колбочки, но зато колбочки видят, например, тёмно красный цвет, тогда как палочки его совершенно не могут увидеть».

В ночное время, когда поток фотонов недостаточен для нормальной работы глаза, зрение обеспечивают в основном палочки, поэтому ночью человек не может различать цвета.

На сегодняшний день придти к единому мнению о принципе цветовосприятия глазом пока не удалось.

Понравилась статья? Поделиться с друзьями:
Личный блог офтальмолога